融合蚁群算法和差分Transformer的农业机器人路径规划研究

李娟1 张振荣2

1.四川托普信息技术职业学院 2.四川农业大学信息工程学院


摘要: 针对农业机器人在复杂田间环境中路径规划精度不足、避障能力有限的问题,提出一种融合蚁群算法和差分Transformer的新型路径规划方法。采用蚁群算法进行初始全局路径搜索,利用其分布式并行搜索能力生成初始可行路径。针对传统蚁群算法中信息素更新方式容易陷入局部最优、对环境动态变化适应性差的缺陷,设计差分Transformer模型替代原有的信息素更新方法。差分Transformer通过自注意力机制,捕捉路径节点之间的长距离依赖关系和非线性特征,对信息素进行更精准地更新和分配,增强算法对复杂环境的适应能力。实验结果表明,所提出的方法在路径长度、规划时间和避障成功率等指标上均优于传统算法。具体而言,与蚁群算法相比,区域规模为50时,路径长度平均减少16.8%,从平均150 m降至125 m;规划时间缩短23.5%,从平均2.13 s降至1.63 s;避障成功率提高11.2%,达到96.5%。该研究为农业机器人自主导航提供有效的解决方案,具有重要的理论意义和应用价值。

关键词: 农业机器人;路径规划;蚁群算法;差分Transformer;智慧农业

基金资助: 国家自然科学基金(61972362)

文章来源:《中国农机化学报》